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ABSTRACT 

W h e n  ~o is an  analyt ic  map  of the  uni t  disk U into itself, and  X is a Banach  

space of analyt ic  funct ions  on U, define the  composi t ion  opera tor  C~o by 

C~o(f) = logo, for f E X.  In this  paper  we show how to use  the  Calderdn 

theory  of complex  interpolat ion to ob ta in  informat ion  on the  s p e c t r u m  

of C~ (under  sui table hypotheses  on ~o) ac t ing  on the  Bloch space /3  and  

BMOA,  the  space of analyt ic  funct ions  in BMO.  To do this  we first ob ta in  

some resul ts  on the  essential  spectral  radius  and  s p e c t r u m  of C~ on the  

B e r g m a n  spaces A p and Hardy  spaces HP, spaces which are connec ted  

to 13 and  B M O A  by the  interpolat ion relat ionships [A 1,/3]t = Ap and 

[H 1 , B M O A ] t  = H p for 1 = p(1 - t). 

1. I n t r o d u c t i o n  

In this paper we determine the spectra of some composition operators on the 

Bergman spaces, and on the Hardy spaces. We then use this information, apply 

Calder6n interpolation methods, and glean information about the spectrum on 

the Bloch space and BMOA. 
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Throughout the entire paper, the open unit disk in the complex plane will be 

denoted by U, qo will denote an analytic map from U to itself, 9~n its nth iterate, 

and C~ the associated composition operator given by 

C ~ ( f )  = f o V. 

All spaces that we consider are collections of functions analytic on the disk U. 

For 1 _< p < oc, H p = H P ( U )  is the Hardy space of functions f that are analytic 

on U and satisfy 

[If[l~, = lim 1 f02~ ~-,~- ~ If(r¢io)LPdO < oo, 

and A p -= A P ( U )  is the Bergman space of functions f that are analytic on U and 

satisfy 

I]fll~lp = J v  I f ( z ) l P d A ( z )  < 

where d A  is normalized Lebesgue measure on U. A function f is in BMOA if 

and only if f E H 2 and 

II:l], = sup{[[f o (fla -- f (a ) l ]H 2 : a • U}  < oo, 

where 
a - - z  

qoa(z) = 1 - ~z" 

The space BMOA is normed by 

IrfIIBMOA ---- I / (0)1 + Ilfll*. 

This is equivalent to the more traditional definition of BMOA by the John-  

Nirenberg theorem. The Bloch space consists of the analytic functions on U that 

satisfy 

M ( f )  = sup{(1 - I z l 2 ) ] f ' ( z ) l : z  E U}  < oo, 

and is normed by 

UIIB = If(0)l + M(y).  

Each of the spaces defined above is a Banach space. 

The formula C~(f)  = f o ~o defines a bounded linear operator on each of 

these Banach spaces. Boundedness on the Hardy and Bergman spaces is by 

now considered standard (see, for example, [9]). The first proof we can find of 

boundedness on BMOA and the Bloch space appears in Theorem 2 of [1]. See 

also [5] and [21] (for BMOA), and [13] (for Bloch). 
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The operator norm, spectral radius, and spectrum of a bounded linear operator 

T, when regarded as an operator on the Banach space X, will be denoted by 

I[TIIx, rx(T) ,  and ax(T) ,  respectively. The essential norm, essential spectral 

radius, and essential spectrum of T, when regarded as an operator on the Banach 

space X,  will be denoted by llT[l~.x, r¢,x(T), and a~,x(T), respectively. These 

notations occasionally will be abbreviated when the space X is clear from context. 

The adjective "essential" indicates that  T is being considered as an element of 

the Calkin algebra (the Banach algebra of bounded linear operators modulo the 

compact operators). 

In [6], Paul Bourdon and Joel Shapiro give the intriguing essential spectral 

radius formula 

for any analytic T: U -+ U. Their proof of the inequality 

holds for any value of p, 0 < p < c~ (when 0 < p < 1 the spaces are p-Banach 

spaces). However, their proof for the opposite inequality, while stated to hold for 

all 0 < p < cx~, does not seem complete in the range 0 < p < 1. (The assertion 

that  if fn are unit vectors in H p tending to 0 uniformly on compact subsets of 

U and K is any compact operator on H p, then I[Kfni]i4p --~ O, is not correct. 

We thank the authors for their correspondence with us on this issue.) Our first 

main result obtains a Bergman space analogue of this equality on the essential 

spectral radius, for p > 1. Our second main result gives the spectrum, O'Ap (C~), 

in terms of re,dr (C~). Specifically, 

a n O'Ap(Cqo) ~--- {,~ e C :  I'll ~ 7"e,Ap(Cq~)} [-j {(~ ( ) )  }n=0, 

for ~ univalent, not an automorphism, with fixed point a C U, and p > 1. This 

extends Corollaries 19 and 24 of [8], where O'H2(C~) and aA2(C~) are given by 

formulas of the same type. Along these same lines, we point out that  Lixin 

Zheng in [24] has shown that  agoo (C~) = U, when qo, not an automorphism, 

fixes a point of U. Our third main result uses our first two results and goes part  

of the way in determining (ru(C~), for ~ not an automorphism, fixing a point in 

U and univalent. We will also show that  our main results still hold when A p is 

replaced by H p and the Bloch space by BMOA. 

The rest of the paper  is organized as follows. The next section contains pre- 

liminary material on three topics: basic facts about the Nevanlinna counting 
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function and its role in change-of-variable formulas, norms of certain evaluation 

functionals on A p and some of its subspaces, and a summary of results we need 

about the Calderdn method of complex interpolation. Section 3 contains the 

main spectral results on Bergman and Bloch spaces, beginning with a Bergman 

space analog of Bourdon and Shapiro's essential spectral radius relationship and 

culminating in our description of the spectrum of C~ on A p for p _> 1 (with 

certain conditions on ~) and a partial description of the spectrum on B. Section 

4 develops the analogous spectral results for H p for p >_ 1, and BMOA. The final 

section gives some examples and discusses a conjecture for the spectrum of C~ 

on B and BMOA. 

2. Preliminary material 

2.1 THE GENERALIZED NEVANLINNA COUNTING FUNCTION. In proving the 

A v version of Bourdon and Shapiro's essential spectral radius formula, we make 

use of the generalized Nevantinna counting function 

= l o g  , ,y > o ,  z e 

wE{~-1(~)} 

The sum is taken over the preimages of z, counting multiplicities, and when 

z • ~(U), N~o,n(z) is defined to he 0. We will need to make use of several results 

involving this function. These are now listed. 

CHANGE OF VARIABLE FORMULA (Formula 6.4 of [19]): If  f is a positive mea- 

surable function on U and 9~ is an analytic lunch.ion mapping U to itself, then 

/U f(qo(z))l(flt(Z)12( log ~z~)~dA(z) = / u  f(z)N~,~(z)dA(z). 

This result gives rise to two formulas which we will use. They tell us about 

the operator norm of the composition operator C~ on H p and A n, respectively. 

These formulas hold for 0 < p < oc (see [20]): 

(1.1) Ill o W[I p ,  = [f(~(0))[ p + ~- If(z)lP-2lf'(z)12N~,l(z)dA(z). 

(1.2) [if o COliPA, ~ If(~(o))p A- fU II(z)7-21f (z)i2N ,,2(z)dA(z). 

Formula (1.2) is a special case of Proposition 2.4 of [20]. 

The symbol "~" means that the left hand side is bounded below and above by 

positive constant multiples of the right hand side; the constants do not depend 

Oil f .  
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If  we apply equation (1.1) to the function ~p(z) = rz we see that,  for f fixing 

the origin, 

1 2 ~  p2 
(1.3) ~ ~0 'f(rei°)'PdO = -2 f u  'f(z)'P-2'f '(z)'21°g ~z[ dA(z)" 

We will also make use of formulas for the essential norm of a composition 

operator on H 2 and A 2, which are given in terms of the Nevanlinna counting 

functions. These are due to Shapiro (Theorem 2.3 of [19]) and Pietro Poggi- 

Corradini (Theorem 1.1 of [16]), respectively. 

(1.4) IIC~ 2 g~,l(a) lie,H2 = l imsup 
I 1 1- log(R) 

(1.5) IIC~oll2e,A 2 = l imsup N~,2(a) 
t l-1- 

Formula (1.5) is a special case of Theorem 1.1 of [16]. 

2.2 CERTAIN INVARIANT SUBSPACES FOR COMPOSITION OPERATORS. Let m 

be a positive integer and suppose that  ~,: U --+ U fixes the origin. The idea of 

considering C~ on the subspace A,~ =- zmA p of A p will appear many times in 

our proofs. Note that  Am is equivalently described as 

{g c A p : g has a zero of at least order m at zero}. 

Because ~(0) = 0, Am is an invariant subspace for C~. Since Am is an invariant 

subspace with finite codimension in A p, any operator that  is invertible on A p 
must also be invertible on Am. This follows similarly to Lemma 7.17 in [9] after 

noting that  a modification of the same proof works for Banach spaces (it appears 

in [9] for Hilbert spaces only). We will use aAm(C~) C aAp(C~), which is an 

immediate consequence of this fact. 

2.3 EVALUATION FUNCTIONALS. The next several results concern the norm of 

the linear functionals of evaluation at w E U, or evaluation of the first derivative 

at w E U, on the Banach space A p and on the invariant subspaces Am discussed 

in the previous subsection. Throughout the rest of the paper, evw will denote 

the linear functional of evaluation at w C U, that  is eva(f)  -- f (w)  for f in 

some Banach space of analytic functions. We emphasize that  the space on which 

ev~ acts will change from time to time, but no change in the notation for the 

functional will be made to indicate this. 

The first result is known. We restrict attention to p > 1, although with a 

suitable interpretation the result extends to 0 < p < 1. 
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PROPOSITION 1: (a) Consider ev~, for w C U, acting on A p, 1 < p < oc. Then 

1 
II v llA- -- (1 - IwI2)2 /P  

(b) For 1 < p < oc there exists a constant c(p), depending only on p, so that for 

any w E U and f E A p, 

I/ '(w)l  _< c(p)(1 -IwI)-(P+2)/PlIflIA,. 

A proof of (a) can be found in [22]. For (b) use Cauchy's formula 

/(z) 
f ' (w)  ---= (z~-w)2dz,  

where 3' is the circle centered at w with radius (1 - Iw] ) /2 ,  and the upper estimate 

from (a) for If(z)l when z e 7. 

The content of the next result is an estimate for the norm of the evaluation 

functional acting on the subspaces Am of A n. 

PROPOSITION 2: Let 1 <_ p < oo. Then there is a constant, c(p), depending only 

on p, so that  if  f E Am and w E U, 

2 m + l  
I f (w) l  < c(P) (1 -1~.12)2/' ' Iwl" ' l l / l lA'" 

Proof: I t  suffices to prove the result for f a polynomial in Am, since these 

polynomials form a dense subset of Am. Since the polynomials are in A 2, we 

can calculate If(w)[ as I(f, g m ) l  where the inner product is the usual A 2 inner 

product and K ~  denotes the kernel function for evaluation at w in zmA 2. 

The kernel function is 

O(? OO 

K ~ ( z )  = E ( 1  + k)(~z)  k = E k(wz)k-l" 
k = m  k=m-t-1 

Differentiating the 

expression 

geometric series formula for Y2~k~__m+lt k we obtain the 

K~(z) 
T1 ~ Nz) 2 ]" 
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Thus, if 1 < p < oc and 1/p+ 1/q = 1, 

EL LIK~IIA~ = IK~(z ) lqdA(z )  

-(i T 

-< ]w]m[ : v  ((m] l+-wzll)+~')qdA(z)]l/qq J 

< I~lm(e.~ + 1) I1 - ~z l  2q J 

By Lemma 3.10 of [2], the last integral in this string of inequalities is bounded 

below and above by multiples (independent of w) of 

(1 -Iwl2) (2-2q>/q = (1 -Iwl=) -2/p. 

Now suppose that f E Am is a polynomial. When p > 1, we apply HSlder's 

inequality and get 

IS(w)[ = I(S,K~)[ = [./i~ f(z)gm(z)dA(z) 

( /U [f (z)IPdA(z) )I/P ( /u [K:(z)lqdA(z) )l/q 

1 
< c(p)(2m + X)lwl m (1 - Iwl=)2/p [IfllA,, 

as desired. Since 
m 2 m + l  

I[K~I[o~ _< w ( i - ] w ] )  2 

a similar calculation gives the result for p = 1. | 

PROPOSITION 3: Let 1 < p < c<). For every w C U with lwl >_ ½, 

Proo[: The inequality []eVw][A,, <_ []evwJJA, is obvious. For the other inequality, 
we first use the functions 

m t 1 - [ w l  2 ~2/ ,  
fw(z) = ~ k(1 ~Z) 2 ] 

which are in the unit ball of Am to see that 

IwP 
Ilev~ll~o, > (1 -I~1~)~/~" 
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1 
(1 -]w12)2/P 

1 whenever Iwl >__ ~. | 

Part  (b) of Proposition 1 gives an estimate for If'(w)[ when f E A p. The next 

result gives an estimate for [f'(w)l when f G zmA 2. 

PROPOSITION 4: Suppose f C zmA 2. Then for every z c U, 

m-1 2v ~m3/2 
If'(w)l ~_ w ~: [~-~]2)211fllA2" 

Proof'. Write 
O(D 

f (w)  = E akwk 
k = m  

so that 
o o  

IIfG2 = Z fa~12 k + l  
k=vrt 

Using the Cauchy Schwarz inequality we see that 

oo \ 1/2 

Lf'(w)l _< Iwlm-l (E(k  + m)2(k + m + 1)lwD ~ )  j~f~A2. 
k=0 

Since k + m + 1 < 2(k + m), we get that 

.112 
(1.6) If'(w)l <_ v@wl"-1(~,(k+m)alwl 2k) llfllA~" 

k=0 

Differentiating (1 - x )  -1 = ~k~__ox k three times we see that 

o o  

6 - E ( k  + 3 ) (k+  2)(k + 1)lwl 2k. 
(1 - - IW[2)  4 k=O 

Since k + m  < km + 3m = m(k  + 3), k + m  < km + 2m = r e ( k + 2 ) ,  and 

k + m < k m  + m  = m(k  + 1), we see that 

o c  o o  

y~'(k + .~)31~1~ < m ~ ( k  + 3)(k + 2)(k + 1)1~1 ~ = 6m3(1 - Iwl:) -~. 
k=O k=0 
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From (1.6) we now get 

w .~-1 2v ~m3/2 
I f ' ( ~ ) l  -< (1 - ~ 2)~ IlfllA~, 

as desired. | 

2.4 COMPLEX INTERPOLATION. In addition to the material  on analytic func- 

tion spaces described above, we will also be using ideas from Alberto Calder6n's 

theory of complex interpolation, as given in [7]. In this subsection we give the 

information that  we need for our proofs of Theorems 9 and 10. 

A pair of Banach spaces, (X0, ]]" []xo) and (Xl,  []. I[xl), is called a "compatible 

pair (in the sense of Calder6n)" if each is continuously embedded in some complex 

Hausdorff topological vector space, and if Xo A X1 is dense in each of X0 and 

X1. If  Xo and X1 form a compatible pair of Banach spaces, one can construct 

other Banach spaces, indexed by the unit interval, according to the "method of 

complex interpolation". As is standard, we let [Xo, X1]t, 0 < t < 1, denote this 

scale of Banach spaces. Now let T: Xo N X1 --+ X0 N X1 be a linear map that  

is continuous with respect to both of the norms []. []xo and ]1" I[xl- Then it 

can be shown that  T can be extended uniquely to a bounded linear operator 

on [Xo, X1]t, for each 0 < t < 1. We will use the following result, relating the 

spectra of T on the intermediate spaces with the spectra of T on the endpoint 

spaces. 

THEOREM (part of [18] Theorem 2): With notation as in the preceding para- 

graph, 

a[xo,x,]~ (T) C_ axo (T) U axl  (T) U aXonX, (T) 

for each 0 < t < 1. The last set in this union is the spectrum of T as viewed as 

an operator on the space Xo N X1, which is a Banach space when normed by 

Ilflln = max{llfllxo, Ul lx ,  }. 

If it is the case that  X1 C_ Xo and there is a positive number K so that  nf[]xo -< 

KlLfllxl for all f ~ x~, then any T invertible on XI  must also be invertible on 

Xo N X1 (meaning that  the inverse for T on X1 also must be continuous with 

respect to the norm on Xo A XI) .  Hence, in this case, 

axonxl (T) C_ ax~ (T) 

and so 

~I~o,X~l~ (T) ~ ~Xo (T) u ~x~ (T). 
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In the context of our work in this paper, we are motivated by the fact that 

for any fixed value of p0 >_ 1, A p° and B form a compatible pair in the sense of 

Calder6n, and for each t C [0, 1], 

(1.7) [A p°, B]t = A p (with equivalent norms) 

for p defined by P0 = p(1 - t). In particular, [A 1, B]t = A p for 1 -- p(1 - t). 

Similarly, for each t C [0, 1], 

(1.8) [H 1, B M O A ] t  = H p (with equivalent norms) 

for p defined by 1 = p(1 - t). A proof of equation (1.7) is given in [27]. Equation 

(1.8) follows from Theorem 2 of [23], since it is known that [H 1, HP]¢ = g 2 for 

1 _ (1 - ¢)/1 + ¢ /p  (see, for example, [10]) and that [H 2, B M O A ] e  = H p for 5 -  
1/p = (1 - 8)/2 (see, for example, page 191 of [25]). We thank Nigel Kalton for 

pointing us in the direction of Wolff's paper [23]. 

We point the reader in the direction of [3] or [25] if he/she feels the urge to 

read more about the general theory of complex interpolation. 

3. S p e c t r a  of  composit ion operators on Bergman and Bloch spaces 

We have three main theorems; these will appear as Theorems 5, 8, and 9 of 

this section. 
The first result relates the essential spectral radius of composition operators 

on various Bergman spaces. Recall from the introduction that for Hardy spaces 

this was done first by Bourdon and Shapiro in [6]. 

THEOREM 5: Suppose that ~ is an analytic map from the unit disk to itsel£ 

Then, for each 1 < p < oo, 

r e , A p  ~o ~ r e , A 2  • 

The proof of Theorem 5 will follow readily from the next two propositions. 

PROPOSITION 6: Suppose that ¢p is an analytic map from the unit disk to itself. 

Then, for each 1 < p < ce, 

Proo~ Making use of the generalized Nevanlinna counting function, our proof 

follows the outline of the Hardy space case as in [6]. Let 

_ lal 2 h 2 / p  
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Since these are unit vectors in A p which tend to 0 uniformly on compact subsets 

of U as lal --~ 1- ,  they converge weakly to 0 in AP,p > 1, and for arbi trary 

compact operator g on A p, IIgf~lTAp ~ 0 as lal --~ 1- .  Thus 

IIC~IIP,Ap > l imsup I[C~ofal[PA~. 
t~i--*l- 

The work of the proof will be to show that  there is a constant c(p), depending 

on p, such that  

lim sup I]C~f~l[PAp > c(p) 2 IIc ilo, 2. 

Upon replacing ~ by its n th  iterate ~n, recalling C~n = C~, and invoking the 

essential spectral radius formula we obtain the desired result from this estimate. 

From formula (1.2) we get 

16[al2 " /u 
[iC~f,~[[pAp ~ [f~(~(O))l p + ~ _ ( t  _ [a[2)2 1 i1 _ ~z16 N~,2 (z)dA(z).  

Let, for the moment,  I denote the second term on the right hand side. Suppose 

we can show that  

I >_ k(p)[IC~l[2~,A , 

for some constant k(p) depending on p. Then, if M is the smaller of the two 

constants in the definition of "~" ,  

IIC~AII~, >- M(lf,~(~(O))l p + k(P)IIC~II2~,A ~) 

and this, in turn, is 

> c(p)I[C~I[~,A~, 

for the constant e(p) = Mk(p)  depending on p. This observation gives us the 

freedom to forget about  the term If~(~(O))lP and focus on the te rm I .  

If  we set 
a - - z  

va(z) -- 1 - -dz' 

then 

and so 

(1 -[al2) 2 
iv'o(z)?- 

16[al2/u 1 iv,a(z)[2dA(z)" I -  p2 Ii_nzr2N o, (z) 
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Substituting z = v~(w), so that w = v~(z) and dA(w) = Iv~(z)12dA(z), yields 

161hi 2 1 
I -  p2 /u  I l_-5(~)12N~,2(Va(W)) dA(w) 

161hi 2 [ I i - ~ w [  2 
- p2 ]u (-fZ4~2N~,2(%(w))dA(w)" 

Then, for any 0 < r < 1, we get I1 - ~w I > 1 - r for w E rU and hence 

161a[ 2 [  ] l - ~ w ]  2 
I > 7 -  JrU (1 1~[2) 2N~'2(va(w))dm(w) 

16fa1 (1 - r )2  f > N~,2(%(w))dA(w). p- i- la-  J,u 
We now fix 0 < r < 1 and consider lal close to 1. We need ]a I close enough 

to 1 to ensure that ~(0) ¢ %(rU). Then N~,2(%(w)) satisfies a sub-mean value 

property on rU ([19] Corollary 6.7), so that 

f N~,2(v~(w))dA(w) >_ r2N~,2(v~(O)) = r2N~,2(a). u 
Therefore, 

16]a]2(1 - r)2r 2 
I > pe(1 - l a l 2 )  2 N~,2(a). 

Observe that 1 - l a r  and log(i/]hi) are comparable as lal -+ 1-,  and there- 

fore can be used interchangeably. Taking limsuplal~ 1- on both sides and using 

formula (1.5) thus gives 

C P limsup [I ~fa[l~,Ap >-- c(p)HC~[I~,A2, 
lal-+l- 

as desired. II 

While the proof of Proposition 6 is similar to the Hardy space proof, the proof 

of Proposition 7 differs in spirit from the proof for the Hardy space case. For 

instance, we do not have Blaschke factors available. 

PROPOSITION 7: Suppose that qo is an analytic map from the unit disk to itself 
that fixes a point in the interior of the disk. Then, for each 1 <_ p < oo, 

(Te,Ap(C~))P ~ (7'e,A~(C~)) 2. 
Proo~ If a E U and qo(a) = a then C~ is similar to a composition operator 

whose symbol fixes the origin. Because similar operators have the same essential 
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spectral radius, there is no loss of generality in assuming that  ~(0) = 0. Recall 

the material  of the preliminary section 2.2. Observe that  limm-+~ IIC~IIAm exists, 

since the norms are decreasing. We claim that  

(1.9) lira IIC~]lmm < c C 2/p m--+oc _ ~a e,A ~" 

Here, and throughout the rest of the argument, c will denote a constant whose 

value may change from time to t ime but always only depends on p. To see that  

the result follows from the claim, note that  if I~1 > IIC~IIA., for some m, then 

C~ - M is invertible on Am. By Lemma 3.5 of [6], C~ - AI is Fredholm on A p. 

Therefore, 

re ,ap(C~)  < inf IIC~llzm = lim I]Cq~[lam. 
m6N rn--+oo 

Hence, assuming the claim, we have 

re,Ap(C~) < c C 2/p _ ,co e , A  ~ , 

whenever ~(0) = 0. Proceeding as in the proof of Theorem 3.8 of [6], replacing 

by its n th  iterate ~ and taking nth roots, we obtain 

[ :1:11'  
(1.10) re'Ap(Cq°n)l/n <-- c1/n C~°n 2 

The left-hand side of this is equal to r~,A,(C~), since re(T ~) = (r~(T)) ~ for any 
n bounded linear operator T and since C~. = C~. Letting n -+ oc, the right- 

hand side of (1.10) has l im i t  ( re ,A , (C~))  2/p, by the spectral radius formula. We 

conclude that  

re,Ap(C~) <_ (re,A2(C~))  2/p. 

Thus we need only establish the claim (1.9). 

Since by equation (1.5) we know 

it suffices to show that  

Now 

IIC~I[2e,A = : l imsup N~,2(a) 
lal-~l- (l°g(1/lal)) 2' 

l i r a  ]lC [l tr  < cl imsup N ,2(a) 
- laL- l- (l°g(1/la[)) 2" 

IIC~IQ~ = sup{[If o ~ll~p: f e Am, IIfIIAP : 1} 
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which, by equat ion (1.2) and the hypothesis  ~(0) = O, is bounded  above by a 

constant  mult iple  of 

s u p {  fu ]f(z)]P-2]f(z)]2N~°'2(z)dA(z): f E A,~, ]lfllAp = 1} 

for any m E N. For a fixed 0 < r < 1 we first show tha t  

(1.11) 

m-+o¢) U 

by considering the cases p > 2 ,p  -- 2, 1 < p < 2 and p = 1 in turn.  In doing this, 

we will use Proposi t ions  1 and 2 to assert  tha t ,  on rU, 
2 m +  1 1 

If(z)l < C ( l _ r ) 2 / p  .r m and If'(z)l <_ c(1 r)l+2/p 

when f is a unit  vector  in Am. 
When  p > 2 this leads to the es t imate ,  for functions in the unit  ball of Am, 

f~v If(z)lV-21f'(z)12N~'2(z)dA(z) < c (2m + 1) p-2 " rm(p_2) f v N ~  2(z)dA(z) 
- ( 1  - r ) "  

< c (2m + 1)P -2  . rm(p-2) 
( 1  - -  r )  4 

since N~,2(z) < (log l / N )  2 on U \ { 0 }  by Proposi t ion  6.3 of [19], since ~(0) = 0. 

Thus  (1.11) holds for p > 2. 

The  case p = 2 is handled in a similar,  bu t  easier, manner  using Propos i t ion  4. 

When  1 < p < 2, we begin with 

~ v If(z)lV-21f'(z)[2Nv'2(z)dA(z) <- ~v If(z)lP-~[f'(z)12(l°g 1/Izl)2dA(z)' 

which again follows f rom N~,2(z) _< (log (1/Izl))  2 on U \ { 0 } .  Next  set s = x/? 

so log (1/Izl)  < 210g(s/Izl) on rU. Thus  

(1.12) 

frv 'f(z)lP-2'f'(z)'2N~'2(z)dA(z) <- 4 f~u 'f(z)lP-2'f'(z)'2(l°g ~z~ )2dA(z)" 

Find 1 < Pl < P < 2 and write the  integrand on the r ight -hand side of (1.12) as 

8 8 ([:(Z)]pl--21: ' (Z)] 2 log ~ ) ( I f ( z ) ]  p-p1 log ~-~). 

In the second factor  we make the es t imate  

2 m + 1  
]f(z)]_<C,l(  _ l z ] ) 2 / p . l z ]  m 
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for f in the unit ball of Am and then observe that 

8 izlm(p_pl ) 1 Izl m(p-P') log ~ < log [~[. 

This is bounded by 1 on rU for m sufficiently large. Thus, for such sufficiently 

large m, the right-hand side of (1.12) is bounded above by 

4(c 2m+l )P--P: 
(1 -- r) 2/p I g  [f(z)lP'-21f'(z)1210g ~z~ dA(z) 

< c (  2 m + l  )p-p:iu,f(z)lpl_21y(z)121Og~z[dA(z) - ( ~ - ~ p  

In this computation we have used s > r, the non-negativity of the integrand, and 

equation (1.3). Finally, since f C Am is a unit vector we use Proposition 2 to see 

that  
2~ dO < c " s m 

]f(s¢°)bP' 2-; - ( f _ - ~ ) 2 / ,  

and hence to conclude that 

1 i v  If(z)lP-21f'(z)12N~2(z)dA(z) <- (2m + 1) p- r roB1~2. C(1 ZT)~ 

Again, r is fixed so this tends to 0 as m --~ oo, verifying (1.11) for 1 < p < 2. 

Finally, when p -- 1 we use similar computations. We have Equation (1.12) 

with p - 2 = -1 ,  and the integrand on the right-hand side of (1.12) is similarly 

written as 

0 f(z) l-l-~lf'(z)1210g ~z~)( [f(z)l~ lOg ~z[) 

for small positive e. When f is in the unit ball of Am for sufficiently large m we 

have 
s ( 2 m + l  ~ 

If(z)L~log ~ < c (1 - r )~/ ,J  

on rU. This leads to the estimate 

[ 2 m + l  ~ 2 2~ J. 
and the argument is completed again by using the estimate 

2 m + 1  
If(sei°)l <_ c(1 _ s)2/p s'~ 
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for f a unit vector in Am. This finishes the verification of (1.11). 

To complete the proof we turn to 

fu..ru If(z)'P-2]f'(z)'UN~,2(z)dA <- Mr ju 
where 

if(z ) ]p-2 If' (z)]2 (log ]z])ZdA, 
\vU 

Mr - sup { U~,~(z) 
(log Izl) 2 : r < Izt < 1}. 

Replacing the integral on the right-hand side of the inequality by the integral 

over U and using 

fu  If(z)lP-21f'(z)12(log <_ cl]fl]PAp < c ]zl)2dA(z) 

for f in the unit ball of Am, we see that  

fu  If(z)F-2lf'(z)12g~,2(z)dA(z) Mrc. < 

\rU 

Letting r --+ 1- and recalling (1.11) we see that 

2 ~  IIC~II~-- < climsup N~,~(z) 
- I z , - * l -  (log lzl) 2 

as desired. II 

Proof of Theorem 5: When ~ has a fixed point in U, the result follows imme- 

diately from Propositions 6 and 7. If ~o has no fixed point in U, then it has a 

Denjoy-Wolff point on the unit circle OU (see, for example, section 2.3 of [9]). 
In this case, only the inequality 

(re,AP(C~))P ~ (re,A2(C~o)) 2 

needs verification since Proposition 6 gives the reverse inequality. A proof can 

be constructed using the following steps. Simple modifications to the proof of 

Theorem 3.9 in [9] show that if ~ has Denjoy-Wolff point w E OU then for p _> 1, 

rAp(C~) = (~t(w)) -2/p SO that (rAp(C~)) p : (rA2(C~o)) 2. Since 

Te,Ap(C~o) ~ TAp(Cqo) : (T A:(C~o)) 2/p, 

we can finish an argument similar to that in Lemma 5.2 of [6] showing that 

re,A2 (C~o) = TA~ (C~o) when ~o has Denjoy-Wolff point on OU. | 
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The  next  result identifies the spec t rum of C~ act ing on A p, 1 _< p < oc, when 

is univalent,  is not an au tomorph ism,  and fixes a point  of U. The  same result  

for a var iety of Hi lber t  spaces of analyt ic  functions including H 2 and A 2 was 

obta ined  in [8]. The  a rgument  we use is very similar to tha t  in [8] and makes  use 

of the behavior  of the i tera t ion sequences of ~o: U ~ U when ~(0) = 0. Recall 

t ha t  {zk} is an i terat ion sequence for ~ if W(zk) = Zk+l for all k. We will need 

the following two lemmas  from [8] which describe the behavior  of the i terat ion 

sequences when ~(0) = 0. 

LEMMA ([8] L e m m a  14, [9] L e m m a  7.35): Suppose qo: V --+ U is analytic, not an 

automorphism, and fixes the origin. There exists b < 1 so that for any iteration 

sequence {zk} we have 

( 1 . 1 3 )  [Zk+l[ < b 
Izkl  - 

1 whenever Izk[ <_ ~. 

LEMMA ([8] L e m m a  13, [9] Lemma 7.34): Suppose ~: U ~ U is analytic, not an 

automorphism, and fixes the origin. Let 0 < r < 1. There exists 1 <_ M < oc 

so that i f  {zk}_~/( is an iteration sequence with [zn] >_ r for some non-negative 

integer n and {wk }~_K are arbitrary complex numbers, then there exists f • H °° 

with 

f ( zk )  = Wk, - K  < k < n, 

and 

ILfliH~ ~ Msup{Iwkl  : - K  < k < n}. 

We next  s tandardize  our indexing nota t ion  for the i terat ion sequences when 

~(0) = O. Henceforth,  i terat ion sequences will be denoted {zk}~_K where K is a 

1 Determine  the non-negat ive integer n by posit ive integer and IZol _> ~. 

(1.14) n = m a x { k :  Izk[ > ~}. 

Note tha t  [zal < ¼ for k > n and there exists a b < 1, by the first l emma,  so 

1 < b < 1. By repea ted  t ha t  lZk+l]/]zk] <_ b for all k _> n. We may  assume tha t  ~ _ 

appl icat ion of this we get Izkl <_ ]z,~[b k-n  for all k > n. 

We can now give the main  result  on spec t ra  of composi t ion  opera tors  on A p. 

THEOREM 8: Suppose that qo is univalent, not  an automorphism, with fixed point  

a E U. Then, f o r l < p < o %  

O'Ap(C~o) ---- {/~ • C :  I,~t ~ l'e,Ap(C~o)} IA {(v t ( a ) )n}~c_0  . 
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Proof: Without loss of generality, we may assume that a = 0, since if 9(a) = a 

then C~ is similar to a composition operator whose symbol fixes 0, and similar 

operators have the same spectrum. Whenever 9(0) = 0 and C~ acts on any 

space of analytic functions which contains the polynomials, then {(9' (0))~}~=0 is 

contained in the spectrum ([12] Lemma 2). If A • aAp(C~) and Ihl > re,Ap(C~) 
then A is an eigenvalue of C~ (see, for example, Proposition 2.2 of [6]). By 

Koenig's Theorem (see, for example, Theorem 2.63 of [9]) the eigenvalues of C~ 

must be of form (9~(0)) ~ for some non-negative integer n. Thus we need only 

show that 

{h • C :  Ihl < re,A~(C~)} C aA~(C~). 

If re,AP (C~) = 0 there is nothing to show since 0 • cap (C~) whenever 9 is not an 

automorphism. Thus for the rest of the argument we assume p =_ re,Ap(C~) > 0 
and choose h, 0 < [h I < p. If we can show (C~ - hi)* is not invertible we will 

be done, since the spectrum is closed. Indeed, we will show that (Cm - hi)* is 

not invertible, where Cm is the restriction of C~ to the invariant subspace Am. 
By the comments of subsection 2.2, once we know that h • a(Cm) - CAm (C~) 
we can conclude that h • aA~(C~). 

We next fix a suitable value of m. Recall the constants b, ½ < b < 1, of the first 

lemma (so that (1.13) is satisfied for any iteration sequence as just described), 

1 and our chosen h ~ 0. and M, 1 < M < c~, of the second lemma using r = 

Fix m sufficiently large so that 

b m 1 
(1.15) Ih--i < 81----M" 

For any iteration sequence, {zk}~=-K, we can define a linear functional Lx on 

Am by 

L~(f) = ~ h-kf(zk).  
k = - K  

This is bounded since, for n as defined by (1.13), Proposition 2 gives for arbitrary 

f •  Am, 

] ~__~ h-kf(Zk) co 2 m + l  c(p) E ]h[-k(l_]zkl2)2/p']Zk]m'llf]]A~' I z.... 
k = n + l  k = n + l  

<c(P)(~5)2/P(2m+l)l l f l la p ~ Izklm 
- -  k = n + l  I ' ~ l k  " 

This is finite, since Izk[ <_ Iznlb k-n for k > n and bm/}h} < 1. 
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A straightforward calculation shows tha t  

( C *  - )t)L)~ = - - i ~ K + l e v z _ K .  

Our goal is to show tha t  C ~ -  A is not bounded  below by considering its action on 

LxlNLxlIAm, where Lx is defined from a judiciously chosen i teration sequence. To 

carry this out  we need a lower bound estimate on tiLalIA,. Given any iteration 
o o  sequence {Zk}k=-g, with n > 0 defined by (1.14), we know by the second lemma 

tha t  there exists f E H °°, [IfllH~ ~-- M,  satisfying 

(i) lf(zk)I = 1 for k = 0 and k = n, 

(ii) z~f(Zk)/(,~k(1 -- ~hzk) 4/p) > 0 for k = 0 and k = n, 

(iii) f (zk)  = 0 for - g  < k < n, k ¢ 0. 

For such f we calculate 

r {zmf (  1 -Izo12)2/P'~ ,x-kzrf(zk)( 1 - - Iz° l~)  2/p 
L'~!~ O - -  ~oZ- -~  -} : E (1 - -2-dzk) 4/p 

k = - K  

Note tha t  the terms of this sum corresponding to - K  _< k _< n are zero unless 

k = 0 or k = n. The k = 0 term is IZoimt(1 - Izol2) 2/p and the k = n term is 

Iz~l m Iz.I m 
I,Xl,~ll_ ~z~lalp > 161),1---- ~. 

We also have the estimate 

~ zrf(zk)O-i~oi~) ~/p <_ i'~44. Ml~,,im(1-izoi~)~/p --~ , ,(b'~)k-" 
~-~-(7 m ~zk---7~7 t5J I,Xl" N k=n-I-1 k=n+l  

< Lz-I ~ 

- 161A1"' 

where we have used I I I I 1 ~  -< M, Iz~l _< ¼, and I~kl -< Iz.lb k -~  for k > n + 1 in 

the first inequality and 

k=~+l 1 SlM1 -- 80M 

in the second. By these estimates and the reverse triangle inequality we see tha t  

(zmi_(1-iz01~)~/~ iz01 ~ 
n x k  (1 --2~z)4/P }1 >- (1-IZol2)2/P" 

But  for 1 _< p < oo 
z~f(1-1zol2)2ip 

(1 - ~oz)41p A, <- M 
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since 

is a unit vector in A p. 
for 

we have 

(1--1Z0t2)  2/p 

(1 --~z)4/p 
This gives the desired lower bound on JlLx[[A~; indeed, 

(1 -Izo[2) 2/p g(z) =_ O-- ~ 

-- z m f g  AP 

1 
> ~ .  Jzo['~(1 -Iz0[2)-2/p 

1 
>- m .  e(p,m) " []eVz°llA'~ 

where the last inequality, with e(p, m) denoting a constant depending only on p 

and m, follows from Proposition 2. 

We are now ready to make a judicious choice of iteration sequence. Recall that  

1/n • 1 / , ~  
r~,A.(C~) = l i r a  [IC~o. ~,Ap = ~ f  [IC~. ~,A." 

Since ~o is univalent we know that  

(1.16) JIGs. J]2,A2 = lira sup ( 1 - J~o~l(w)]) 
2. 

Whenever this is non-zero it may be equivalently calculated as 

[Iv,° 2 1 -Iwl  J[e,A ~ = limsup (1 - ~ - ~ ) J )  
Iwl~l- 

Given 0 < JAJ < p = re,Ap(C~), find p' such that I£1 < p' < p. 

Proposition 7 
1In ( 21P ) 1In 

p = lim IlC~. II~,a, < lira J[C~o~ I[~,a~ 
n--~oo n--~oo 

there exists No such that for all n > No 

Since by 

2/p 11,~ 
(HC~pnlle,A2) > p' 

or 
2/p 

IC~° I~A~ > (p')'. 
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Thus, for any K >_ No we can find, by (1.16), a w sufficiently close to OU so that  

{ 1-I~1 2/p (i) -> (d) K, 

1 and (ii) I~K(W)l >_ ~, 
(iii) I l e%K(~) l l am  > 1 I le%K(~) l l  Ap 

II . . . .  IIAm -- 27'~ IleVwllnP 
The inequality of (iii) follows from (ii) and Proposition 3. 

Facts (i) and (iii) together with Proposition 1 give 

1 i K 
> • 

Ile  llAm - 

With this choice of w we form an iteration sequence {zk}~_K by setting Z-K = W 

1 At this point the positive integer K is still so that  z0 = qOg(W) and Izol _> ~. 

arbitrary, except for the requirement that  K > No. Our estimates say 

[l(C~ - A)LxIIAm < I~lK÷lllevz-K IIA~ . M .  c(m,p)  
IlZxllam - Ilev~o[IAm 

<_ lAIK+l. M . c ( m , p ) ( ~ )  K 

<<_ IAI " M " e(m,p)([~, ) K 

The various constants depend on (at most) p and m which are fixed values. We 

may thus choose K >_ No large so that  this product is as small as desired. This 

shows that  C *  - A is not bounded below. | 

If  ~o satisfies the hypotheses of the preceding theorem, then r¢,Ap (C~) < 1. We 

will have more to say about this fact in the last section, where we will prove it. 

THEOREM 9: Suppose that 9~ is univalent, is not an automorphism, and fixes a 
point in U. I f  re,Av(C~) 5~ 0 for any, and hence every, value of 1 < p < (x), then 

the spectrum of C~ on the Bloch space, ~rt~(C~), contains the annulus 

e c :  5 1}. 

The inner radius, r~,A1 (C~), is at most (r~,A2 (C~)) 2. 

Proof'. We rely on the material  described in subsection 2.4. 

Recall that  [A TM, •]t, 0 < t < 1, denotes the scale of Banach spaces constructed 

via Calderhn's method of complex interpolation. An application of Theorem 2 

of [18] gives 
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for all 1 <_ P0 < co and 0 < t < 1. Equation (1.7) promises that  [A TM, B]t will 

be the same set of functions that  are in A p (where t and p have the appropriate 

relation), but the norm on [AP°,B]t is only promised to be equivalent to the 

standard norm defined on A p. However, changing from one equivalent complete 

norm to another does not give any change in the spectrum of an operator on the 

space. Thus, Theorem 2 of [18] gives 

for a l l l < p 0 < p < c o .  

Next, observe that  B C_ A p for all p < co and that  there is a positive number 

K (depending on p) such that  I]fllAp <- gllf]l~ for each f E B. This follows from 

the estimate 
1 1 1 -I- Izl 

I : ( z ) -  :(o)1 _< ~ og I_ - :~ I I / I IB  

which holds for all f E B (see, for example, Theorem 5.1.6 in [25]). Therefore, 

for a l l l < p 0 < p < c o .  

Specializing to the choice Po = 1 and using Theorem 8 and the fact that  the 

spectrum is closed, we have 

{x • c :  IAI _< r~,A,(c,o)} c {A e c :  IAI <_ , '~ : , (c~)}  u ~B(C~) 

for all 1 <_ p < co. From our Theorem 5 we have that  

Therefore, 

re,A,(C~,)?I, as p t co. 

{~ e c :  I:q <_ 1} c_ {:~ e c -  I~l _< ,-~,A, (c~,)} u ~B(c~,). 

Since the spectrum is always a closed set and re,Al(C~o ) < 1, we get the desired 

description of at~(Cv). By Proposition 7 we know that  

re:,(C~) < (ro:~(C~)) 2. I 

When the hypotheses of Theorem 9 hold, then the essential norm of C~ on 

the Bloch space must equal 1. This fact holds under more general hypotheses 

as well (for example, if ~ has finite angular derivative at some point of U); see 



Vol. 128, 2002 COMPOSITION OPERATORS ON BLOCH AND BERGMAN SPACES 347 

Theorem 2.1 of [14] or chapter 5 of [11]. When re,AS (C~) = 0 the essential norm 

on the Bloch space can be strictly less than 1. Indeed, for any 0 < s < 1 there 

exist univalent ~ fixing 0 with IIC~,lle,u = s (see the discussion of the "lens map" 

in Proposition 6.4 of [11] and the equality of essential norm of a composition 

operator on the Bloch and little Bloeh spaces in Theorem 2.1 of [14]). While 

these examples satisfy re,A2 (C~) = 0 since C~ is compact on A 2, it is possible for 

the essential spectral radius on A 2 to be 0 even though C~ is not compact on A 2. 

For a specific example, notice that  the univalent ~ with C~ not compact on H 2 

yet r¢,H~ (C: )  = 0 given in [6] also provides an example with the same properties 
on A 2. 

4. S p e c t r a  o f  compos i t ion  operators on Hardy spaces and B M O A  

There is an analogue of Theorem 9 for the spectrum of C~ acting on BMOA 

when ~ is univalent, is not an automorphism, and fixes a point in U. 

THEOREM 10: Suppose that ~ is univalent, is not an automorphism, and fixes a 

point in U. I f  re,Hp(C~) ~ 0 for any, and hence every, value of l < p < oo, then 

the spectrum of C~ on BMOA, aBMoA(C~), contains the annulus 

{A E C: re,Hi(C~) < IAI <_ 1} 

where the inner radius re,HI (C~) is at most (re,H 2 (C~)) 2. 

We briefly summarize the modifications needed to some of the results of sections 

2.3 and 3 in order to prove Theorem 10. 

The H p version of Proposition 1 is well-known (see, for example, Corollary 

2.14 in [9]). In part  (a) the exponent 2/p is replaced by 1/p. A similar use of 

Cauchy's formula gives the H p version of (b): for w C U, 

I/'(w)] _< c(p)(1 - Iwl) - (p+l ) /P l l f l lH, .  

There is an H p version of Proposition 2 which is both stronger and easier to 

obtain. This is our next result. 

PROPOSITION 11: For w E U and p >_ 1, 

Ilevwlln m ~ [Wire(1 --IWl2)-I/P 

where H m = z m H  p, m any positive integer. 

Proof  Since f E zmH p implies f = zmg for some g E H p with ]]91]np = IlfllH~, 

it follows that  

If(w)[ = Iw[mlg(w)l < c(p)lw[m(1 --[wl)-l/P[IfllH~. 
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Using the H p unit vectors f ( z )  -- zm(1 - Iw12)l/P(1 - Nz)  -2/p we get the other 

inequality. I 

The next result is tile Hardy space analogue of Proposition 3. 

PROPOSITION 12: Let 1 _< p < oc. There is a constant e(p) so that  for all w C U 

with I~I-> ½, 

Proof.. Only the right hand inequality needs proof. This follows from llevw I[Hp "~ 

(1 -Iwl)-l/p and 

Ilev~ll.m ~ Iwlm(1 --Iwl) - v p  --> c(p)2-m(1 - I w l )  -1/~ 

for Iwl _> 1. I 

The version of Proposition 4 for z m H  2 appears as Lemma 5.2(b) of [20]: For 

every z C U, 

[f '(z)l < v~mlzr~-~(1 -[zl~)-z/21lflIH 2. 

We next prove an H p version of Theorem 8, identifying the spectrum when ~, 

not an automorphism, is univalent with a fixed point in U. 

THEOREM 13: Suppose 9~ is univalent, not  an automorphism,  with fixed point  a 

in U. Then  for 1 < p < c~, 

aH,(C~) = (;~ • C :  }:'I <- , 'o,~.(C~)} U { (~ ' (a) ) " }~_ o. 

Proof: The outline of the argument is exactly the same as in the proof of 

Theorem 8, so we only indicate the necessary modifications. The linear functional 

L~ acting on Hm = z m H  p (for fixed m chosen to satisfy inequality (1.14)) is 

defined by the same formula: 

L x ( f )  = ),-kf(zk) 
k = - K  

where {zk}~_K is an iteration sequence, indexed with the same conventions as 

described prior to the proof of Theorem 8. Proposition 11 gives the boundedness 

of Lx on H a .  

We get a lower bound estimate on IILxl[gm by considering L x ( z m f g )  where g 

is the H p unit vector 
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and f is an H ~ function with Ilfllu~ ~ M satisfying 

(i) If(zk)l = 1 for k = 0 and k = n, 

(ii) (z~f(zk) / (Ak(1 - Ydzk)2/P)) > 0 for k = 0 and k = n, 

Off) f ( z k ) = O f o r - g _ <  k < n , k ~ O .  
Then  

L~(zmfg) 
(:X3 

= ~ A -kz '~f(zk)(1  -I~o1~),/~ 
k=-K (1 - ~ z k ) ~ / p  

I zo l  m I z ~ l m ( 1  - Izol2)vp - + 
( 1 - I z o ? ) V P  IAPI 1 - ~ z ~ l = / p  

= I + I I  + I I I .  

+ ~ A -kz '~f (zk) (1- l z°12) l /p  
k = n + l  (1 - ~-5zk)2/P 

As in Theorem 8, choosing m to satisfy (1.15) guarantees  tha t  I I  > IIIII so 

tha t  

L~(zmfg) > Izolm(1 -izol=)-v~. 

Since IIz~fgllH. <_ M we see t ha t  

Iz01 m c(p) ev 
IIL~IIH~ >-- M(1 :~o]2)l /P >- M ~ollHm. 

Using the univalence of ~ we have 

1 - I ~ ( w ) l  HV~n 2 II~,H2 = l im sup 
I~1~1 1 - ] w  i 

and, given 0 < [A[ < p' < p - -  re,Hp(C~), we m a y  find No so tha t  whenever 

n > No, 
~,.~ > (p')". 

Thus  for any K >_ No we may  find w in U with Iwl sufficiently close to 1 tha t  
[ 1-1~1 1/p 

(i) ~ ~ - ~ ) 1 )  -> (P')~' 
(ii) [~g(w)l > 1/2, and 

Hev~K(~)I IHm> t Ile%K(~,)IIH" 1 ( 1-1wl ~l/p  (iii) II~vwll~m - 2m~(p) II~v~ll.p ~ ~ , l - I ~ K ( w ) l ]  ' 
where we have used Proposi t ion  12 in (iii). 

Using (i) and (iii) we see t ha t  

> c(p, m)(p') K 
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Choosing our iteration sequence {Zk}~_K by setting Z - g  = w we obtain 

} } (C~ - ),)L),}IH,,, < i'xtK+IIIev~_,~ }}H,,, . M .  c (p )  

IIL~,II/-/,,, - Ilev~ollHm 

_< I~1- M -  c ( - , , ; ) ( ~ )  K . 

Since m is fixed, this tends to 0 as K -+ oo, and C m - A is not bounded below. 

II 

We now return to the proof of the first theorem of this section. 

Proof  of Theorem 10: Using equation (1.8) in place of equation (1.7) and pro- 

ceeding exactly as in the proof of Theorem 9, and since BMOA is continuously 

contained in each Hardy space, we arrive at 

O'Hp (C~) C_ o H, (C~o) U O'BMoA (C~o ) 

for all 1 < p < cx~. Theorem 13 now gives 

{.x E c :  I.xl <_ , -~ , . , , ( c~ ) }  c_ {.x • c :  I.xl < r~,m(C~,)}U~BMoA(C,o) 

for all i _< p < oo. The Bourdon-Shapiro essential spectral radius formula applies 

to give 

and the desired result follows exactly as in the proof of Theorem 9. II 

5. E x a m p l e s  a n d  o p e n  ques t i ons  

In this section we give some examples and discuss a conjecture. To begin with, 

we observe that when ~o: U --+ U is univalent, fixes a point of U, and is not 

an automorphism, then re,A2(C~) (as well as r~,H2(C~)) is strictly less than 1. 

Indeed 
/' 1 - l g - l ( w )  1 -I~1 21-1 

J 

= [ l iminf  ( 1 _-_]_~°(w)l~2] -1 
Iwl-*l- 1 - I w  I ] l 

Without loss of generality assume that 0 is the fixed point in U. Since 

l iminf 1 - I f ( w ) l  
,~1-,1- 1-1wl 
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is the infimum of the angular derivative of ~ on OU, by Julia's Lemma it must 

be strictly greater than 1 (see Lemma 7.33 of [9]) if ~o is not a rotation. Then 

using equation (1.5) we have 

1/n , ~ , ~ ( c ~ )  = lira Ilc~. d .~ 

1/n 
= inf IIC~, ~,A 2 

ncN 

_< IIc~{l~,~ 

< 1 .  

A similar argument gives the same conclusion for re,H2 (C~). See also [4], Propo- 

sition 3.3 where the same result is obtained under more general hypotheses on 

qo. 
We now let 0 < r < 1 and consider 

r z  ~(z) - 
1 - (1  - r ) z "  

This function is univalent, fixes zero (and one), and is not an automorphism. 

Hence, it satisfies the hypotheses for Theorems 9 and 10. Its nth iterate is given 

by 
r n z  

~ ( ~ )  = 1 - (1  - r ~ ) z "  

For each non-negative integer n, the angular derivative of ~n at 1 is given by 

(qon)'(1) = 1/r n, 

while at every other ( E OU the angular derivative is infinite. Thus, 

limsup (loglg)-l('w)[ 2 
i~1~1_ \ loglwl ) =(~° '(1))  - 2 : r 2 "  

In this equation, ~ can be replaced by ~on. From equation (1.5) we deduce that  

and hence 

JtC~. 2 Ile,A 2 = ( r n )  2, 

rc ,A~ ( C ~ )  = r.  

Theorems 5, 8, and 9 now give 

re,Ap(C~o ) = r 2/p, p > 1, 

re,At (C~) < r 2 
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and 

~ ( c ~ )  = {A • c :  IAI < r~,A~(c~)} u {(~'(0))~}~=0, 

for each 1 _< p < oc. Thus 

{~ • c :  ~ , ~ ( c ~ )  < I~1 _< 1} c o~(c~)  

where we know the inner radius of this annulus is at most  r 2. For the same class 

of examples, we get 

re,H,(C~) ---- r lIp, p > l, 

re,H1 (C~) <_ r 

and 

~ p ( c ~ )  = {~ • c :  I~t < ,-~,H~(c~)} u {(~'(0))n}~_o, 

for each 1 < p < oc. Thus 

where the inner radius is at most  r. We can choose r as close to zero as we wish. 

This shows tha t  the annuli of Theorems 9 and 10 can be very "fat". 

As previously observed when ~(0) = 0, aB(C~) and aBMoA(C~) must each 

contain (~'(0)) n, n = 0, 1, 2 , . . . .  I f  the essential spectral  radius of C~o on A 2 (or 

H 2) is not  zero, none of these points (except for (W'(0)) ° = 1) can be eigenvalues 

for C~. The reason is tha t  if 0 # (~'(0)) '~ is an eigenvalue for C~ for some n _ 1, 

then the eigenspace is one-dimensional and spanned by the kth power of the 

Koenig 's  function F for ~ (i.e., the unique analytic F on U with F o ~ = ~ ' ( 0 ) F  

and F'(O) = 1). But  if F k E B (or F k C B M O A ) ,  then F E A p for all p < oc 

(F • H p for all p < co) which forces aAp(C~) = 0 (CrHp(C~) = 0); see Theorem 

1.2 in [15] and Theorem 4.4 in [4]. 

We end with a conjecture. We point  out tha t  a consequence of our work is tha t  

a nonzero value of re,Ap (C~) for any 1 < p < oc is equivalent to re,Ap (C~) # 0 

for every value of 1 < p < oo and tha t  the same holds true for the Hardy  spaces. 

For univalent ~, re,A2 (C~) ¢ 0 if and only if re,H 2 (C~) ~ O. 

C O N J E C T U R E :  Suppose that ~ is univalent, is not an automorphism, and fixes 

a point in U. Ifre,H2(C~) ~£ 0 then the spectrum of C~o on the Bloch space or 

BMOA is the closed unit disk: 

O'BMoA(C~) = O 'B(~)  : U. 
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Without loss of generality we may take the fixed point to be 0. Norm consid- 

erations show that  aB(C~) (respectively aBMoA(C~)) is contained in the closed 

unit disk, so the issue is to show that  

< 

(respectively {A : IAI < r~,g 1 (C~)}) is in the spectrum. This would follow if the 

arguments of Theorems 9 and 10 could be extended to the range 0 < p < 1, 

however the impediments to pursuing this approach seem formidible. A quasi- 

Banach space version of Theorem 2 in [18] and p < 1 versions of Theorems 5 and 

8 (and their Hardy space analogues) would be needed. I t  may be more tractable 

to proceed by adapting the proof of Theorem 8 directly to B and B M O A .  Indeed, 

with this approach it might be possible to omit the univalence hypothesis on ~. 

We leave this for another time. 
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